WEHER COC

PATENT APPLICATION Mo6398 STA-154

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION OF

VIKTOR STOLLER ET AL

SERIAL NUMBER: 09/868,995

FILED: JUNE 20, 2001

TITLE: NICKEL MIXED HYDROXIDE, METHOD FOR PRODUCING THE SAME, AND THE USE THEREOF AS A CATHODE MATERIAL IN ALKALINE BATTERIES

U.S. PATENT 6,849,208

) ISSUED: FEBRUARY 1, 2005

CERTIFICATE OF CORRECTION UNDER 37 C.F.R. §1.323

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Correction to the subject patent is respectfully requested relative to a mistake made by Applicants, and a mistake made by the Office.

Remarks begin on page 2 of this paper.

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an enveloped addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231 3/24/05		
Date		
James R. Franks, Reg. No. 42,552		
Name of applicant, assignee or Registered Representative		
Jum St. the		
Signature		
March 24, 2005		
Date		

REMARKS

Please correct Claims 1 and 9 as indicated on the Certificate of Correction sheet included herewith.

In accordance with the requirements of 35 U.S.C. § 255, Applicants provide the following showing that the mistake as to Claims 1 and 9, with regard to the line separating the numerator from the denominator in Equation (I), occurred in good faith. The mistake in the mathematical formula of Claims 1 and 9 occurred due to the unclear manner in which Applicants presented the amendments to Claims 1 and 9 in an Amendment dated 5 December 2003. Pages 2, 3 and 4 of the Amendment of 5 December 2003 are included herewith in the appendix. In Applicants' Amendment of 5 December 2003, the line separating the numerator from the denominator of Equation (I) was not clearly represented. Attention is also directed to page 5, line 27 of the specification.

In addition, in the denominator of Equation (I) of Claims 1 and 9: $M_a^{+x'}$ should be replaced with M_a^{+x} (i.e., without a "prime" after the superscripted +x). This is deemed to be a mistake by the Office. Attention is directed to pages 2-4 of Applicants' Amendment of 5 December 2003, and page 5, line 27 of the specification.

Inclusion of the line separating the denominator and numerator of Equation (I) of Claims 1 and 9 is not deemed to represent the entry of new matter or to require reexamination. Removal of the "prime" from the denominator of Equation (I) is not deemed to represent the entry of new matter or to require reexamination.

In light of the preceding remarks, Equation (I) in each of Claims 1 and 9 should appear as follows.

 $\alpha = \frac{M_a^{+(x+1)}}{M_a^{+(x+1)} + M_a^{+x}}$ (I)

Mo6398

)

In light of the showing in accordance with 35 U.S.C. § 255, the preceding remarks, and the concurrent authorization for the Office to deduct payment of the fee under 37 C.F.R. § 1.20(a) from Applicants' deposit account 13-3848, entry of the present Certificate of Correction is respectfully requested.

Respectfully submitted,

Βv

James R. Franks Agent for Applicants Reg. No. 42,552

Bayer MaterialScience LLC 100 Bayer Road Pittsburgh, Pennsylvania 15205-9741 (412) 777-3808 FACSIMILE PHONE NUMBER: (412) 777-3902 s:\shared\jmf\JRF0314

Please cancel Claim 16.

Please amend Claims 12, 18 and 21.

1-11 (Cancelled)

12. (Currently Amended) Nickel mixed hydroxide with Ni as the main element and with a layer structure, comprising

a) at least one element M_a from the group comprising Fe, Cr, Co, Ti, Zr and Cu which is present in two different oxidation states which differ by one electron in terms of the number of outer electrons, wherein the degree of oxidation α of the element M_a , defined according to the following formula (I), is from 0.25 to 0.75

	$\underline{M}_{a}^{\pm(x\pm1)}$	
<u>α =</u>		(I),
	$M_{a}^{+(x+1)} + M_{a}^{+x}$	

- wherein $M_a^{+(x+1)}$ means the molar quantity of the element M_a in the higher oxidation state, and $M_a^{+(x)}$ the molar quantity of the element M_a in the lower oxidation state, and x is a number between 1 and 3;
- b) at least one element M_b from the group comprising B, Al, Ga, In and rare earth metals present in the trivalent oxidation state;
- optionally at least one element M_c from the group comprising Mg, Ca,
 Sr, Ba and Zn present in the divalent oxidation state;
- apart from the hydroxide, at least one additional anion selected from the group consisting of halides, carbonate, sulfate, acetate, oxalate, borate and phosphate in a quantity sufficient to preserve the electroneutrality of the mixed hydroxide; and
- e) water of hydration in a quantity which stabilizes the relevant structure of the mixed hydroxide.

13. (Previously Presented) The nickel mixed hydroxide according to Claim 12, wherein the proportion of Ni is from 60 to 92 mol % and the total proportion of the elements M_a , M_b and M_c is from 40 to 8 mol %, in each case based on the total amount of Ni, M_a , M_b and M_c .

14.(Previously Presented)The nickel mixed hydroxide according to ClaimMo-6398-2-

12, wherein the proportion of the element M_a is from 10 to 40 mol %, based on the total amount of the elements M_a , M_b and M_c .

15. (Previously Presented) The nickel mixed hydroxide according to Claim 12, wherein the proportion of the element M_c is from 1 to 30 mol %, based on the total amount of elements M_a , M_b and M_c .

16. (Cancelled)

17. (Previously Presented) The nickel mixed hydroxide according to Claim 12, wherein the nickel mixed hydroxide is in the form of a powder with an average particle size from 1 to $100 \,\mu$ m.

18. (Currently Amended) The nickel mixed hydroxide according to Claim 12, wherein the rare earth metals of the element M_b are selected from the group consisting of Sc SC, Y and La.

19. (Previously Presented) The nickel mixed hydroxide according to Claim12, wherein the halides are selected from the group consisting of fluoride and chloride.

20. (Previously Presented) The nickel mixed hydroxide according to Claim 12, wherein the nickel mixed hydroxide is a cathode material in an alkaline battery.

21. (Currently Amended) A process for preparing a nickel mixed hydroxide with Ni as the main element and with a layer structure, comprising:

a) at least one element M_a selected from the group consisting of Fe, Cr, Co, Ti, Zr and Cu which is present in two different oxidation states which differ by one electron in terms of the number of outer electrons, wherein the degree of <u>oxidation α of the element M_a , defined according to the following formula (I), is from</u> 0.25 to 0.75

$$\alpha = \frac{\underline{M_a}^{\pm (x+1)}}{\underline{M_a}^{\pm (x+1)} + \underline{M_a}^{\pm x}}$$

wherein $M_a^{+(x+1)}$ means the molar quantity of the element M_a in the higher oxidation state, and $M_a^{+(x)}$ the molar quantity of the element M_a in the

Mo-6398

lower oxidation state, and x is a number between 1 and 3;

- b) at least one element M_b from selected from the group consisting of B, Al, Ga, In and rare earth metals present in the trivalent oxidation state;
- optionally at least one element M_c selected from the group consisting of Mg, Ca, Sr, Ba and Zn present in the divalent oxidation state;
- apart from the hydroxide, at least one additional anion selected from the group consisting of halides, carbonate, sulfate, acetate, oxalate, borate and phosphate in a quantity sufficient to preserve the electroneutrality of the mixed hydroxide; and
- e) water of hydration in a quantity which stabilizes the relevant structure of the mixed hydroxide,

the process comprising reacting components required to obtain the relevant mixed hydroxides in the form of water-soluble salts of Ni and of the elements M_a , M_b and optionally M_c in a basic, aqueous medium for the co-precipitation of hydroxide reaction products with the formation of a homogeneous suspension of said reaction products,

wherein either water-soluble salts of the element M_a are used in different oxidation states or a water-soluble salt of the element M_a is used in the lower oxidation state and a partial oxidation is carried out until the desired ratio is obtained between the different oxidation states of the element M_a, or a water-soluble salt of the element M_a is used in the higher oxidation state and a partial reduction is carried out until the desired ratio is obtained between the different oxidation states of the element M_a, separation of the water from the suspension, and drying of the reaction products.

22. (Previously Presented) The process according to Claim 21, wherein at least one of the reaction components is introduced into the aqueous medium by anodic oxidation of the corresponding metal.

23. (Previously Presented) The process according to Claim 21, wherein the reaction is carried out at a pH from 8 to 13.

24. (Previously Presented) The process according to Claim 21, wherein Mo-6398 -4-

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENTNO : 6,849,208

DATED : February 1, 2005 INVENTOR(S) : Viktor Stoller et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In Claim 1, at column 12, line 20, delete Equation (I) and insert the following:

$$\alpha = \frac{M_a^{+(x+1)}}{M_a^{+(x+1)} + M_a^{+x}}$$
(I)

In Claim 9, at column 13, line 10, delete Equation (I) and insert the following:

$$\alpha = \frac{M_a^{+(x+1)}}{M_a^{+(x+1)} + M_a^{+x}}$$
(I)

MAILING ADDRESS OF SENDER:

James R. Franks Bayer MaterialScience LLC Patent Department 100 Bayer Road Pittsburgh, PA 15205-9741 PATENT NO. 6,849,208

No. of additional copies

This collection of information is required by 37 CFR 1.322, 1.323, and 1.324. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.